Raspberry pi 4 model B を試す

RPI4 なら、いろいろできるかもしれない?

試してみます。

Tensorflow を動かす

$ sudo apt install libatlas-base-dev

$ pip3 install tensorflow --user

動作確認まで

$ python3
Python 3.7.3 (default, Apr  3 2019, 05:39:12) 
[GCC 8.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow as tf
WARNING: Logging before flag parsing goes to stderr.
W0711 11:25:13.680072 3069655760 deprecation_wrapper.py:118] From /home/kiyo/.local/lib/python3.7/site-packages/tensorflow/__init__.py:98: The name tf.AUTO_REUSE is deprecated. Please use tf.compat.v1.AUTO_REUSE instead.

W0711 11:25:13.680785 3069655760 deprecation_wrapper.py:118] From /home/kiyo/.local/lib/python3.7/site-packages/tensorflow/__init__.py:98: The name tf.AttrValue is deprecated. Please use tf.compat.v1.AttrValue instead.

W0711 11:25:13.681129 3069655760 deprecation_wrapper.py:118] From /home/kiyo/.local/lib/python3.7/site-packages/tensorflow/__init__.py:98: The name tf.COMPILER_VERSION is deprecated. Please use tf.version.COMPILER_VERSION instead.

W0711 11:25:13.681412 3069655760 deprecation_wrapper.py:118] From /home/kiyo/.local/lib/python3.7/site-packages/tensorflow/__init__.py:98: The name tf.CXX11_ABI_FLAG is deprecated. Please use tf.sysconfig.CXX11_ABI_FLAG instead.

W0711 11:25:13.681687 3069655760 deprecation_wrapper.py:118] From /home/kiyo/.local/lib/python3.7/site-packages/tensorflow/__init__.py:98: The name tf.ConditionalAccumulator is deprecated. Please use tf.compat.v1.ConditionalAccumulator instead.

>>> hello = tf.constant('Hello, TensorFlow!')
>>> sess = tf.Session()
>>> print(sess.run(hello))
b'Hello, TensorFlow!'
>>>

Keras Mnist Fashion を試す

試しました。 動きました。

Darknet

github.com

$ git clone https://github.com/pjreddie/darknet
$ cd darknet
$ make

$ ./darknet detector test cfg/coco.data cfg/yolov2.cfg yolov2.weights data/person.jpg 
layer     filters    size              input                output
    0 conv     32  3 x 3 / 1   608 x 608 x   3   ->   608 x 608 x  32  0.639 BFLOPs
    1 max          2 x 2 / 2   608 x 608 x  32   ->   304 x 304 x  32
    2 conv     64  3 x 3 / 1   304 x 304 x  32   ->   304 x 304 x  64  3.407 BFLOPs
    3 max          2 x 2 / 2   304 x 304 x  64   ->   152 x 152 x  64
    4 conv    128  3 x 3 / 1   152 x 152 x  64   ->   152 x 152 x 128  3.407 BFLOPs
    5 conv     64  1 x 1 / 1   152 x 152 x 128   ->   152 x 152 x  64  0.379 BFLOPs
    6 conv    128  3 x 3 / 1   152 x 152 x  64   ->   152 x 152 x 128  3.407 BFLOPs
    7 max          2 x 2 / 2   152 x 152 x 128   ->    76 x  76 x 128
    8 conv    256  3 x 3 / 1    76 x  76 x 128   ->    76 x  76 x 256  3.407 BFLOPs
    9 conv    128  1 x 1 / 1    76 x  76 x 256   ->    76 x  76 x 128  0.379 BFLOPs
   10 conv    256  3 x 3 / 1    76 x  76 x 128   ->    76 x  76 x 256  3.407 BFLOPs
   11 max          2 x 2 / 2    76 x  76 x 256   ->    38 x  38 x 256
   12 conv    512  3 x 3 / 1    38 x  38 x 256   ->    38 x  38 x 512  3.407 BFLOPs
   13 conv    256  1 x 1 / 1    38 x  38 x 512   ->    38 x  38 x 256  0.379 BFLOPs
   14 conv    512  3 x 3 / 1    38 x  38 x 256   ->    38 x  38 x 512  3.407 BFLOPs
   15 conv    256  1 x 1 / 1    38 x  38 x 512   ->    38 x  38 x 256  0.379 BFLOPs
   16 conv    512  3 x 3 / 1    38 x  38 x 256   ->    38 x  38 x 512  3.407 BFLOPs
   17 max          2 x 2 / 2    38 x  38 x 512   ->    19 x  19 x 512
   18 conv   1024  3 x 3 / 1    19 x  19 x 512   ->    19 x  19 x1024  3.407 BFLOPs
   19 conv    512  1 x 1 / 1    19 x  19 x1024   ->    19 x  19 x 512  0.379 BFLOPs
   20 conv   1024  3 x 3 / 1    19 x  19 x 512   ->    19 x  19 x1024  3.407 BFLOPs
   21 conv    512  1 x 1 / 1    19 x  19 x1024   ->    19 x  19 x 512  0.379 BFLOPs
   22 conv   1024  3 x 3 / 1    19 x  19 x 512   ->    19 x  19 x1024  3.407 BFLOPs
   23 conv   1024  3 x 3 / 1    19 x  19 x1024   ->    19 x  19 x1024  6.814 BFLOPs
   24 conv   1024  3 x 3 / 1    19 x  19 x1024   ->    19 x  19 x1024  6.814 BFLOPs
   25 route  16
   26 conv     64  1 x 1 / 1    38 x  38 x 512   ->    38 x  38 x  64  0.095 BFLOPs
   27 reorg              / 2    38 x  38 x  64   ->    19 x  19 x 256
   28 route  27 24
   29 conv   1024  3 x 3 / 1    19 x  19 x1280   ->    19 x  19 x1024  8.517 BFLOPs
   30 conv    425  1 x 1 / 1    19 x  19 x1024   ->    19 x  19 x 425  0.314 BFLOPs
   31 detection
mask_scale: Using default '1.000000'
Loading weights from yolov2.weights...Done!
data/person.jpg: Predicted in 71.214195 seconds.
horse: 82%
dog: 86%
person: 86%

$ wget https://pjreddie.com/media/files/yolov2-tiny-voc.weights

$ ./darknet detector test cfg/voc.data cfg/yolov2-tiny-voc.cfg yolov2-tiny-voc.weights data/dog.jpg

なかなか遅いですね。

f:id:pongsuke:20190711115417j:plain
Darknet

Darknet nnpack

github.com

python3 に書き換えて実行するのだが、先に、

sudo apt-get -y install re2c

しておく。

コンパイルまで

$ sudo pip3 install --upgrade git+https://github.com/Maratyszcza/PeachPy
$ sudo pip3 install --upgrade git+https://github.com/Maratyszcza/confu

$ cd
$ git clone https://github.com/ninja-build/ninja.git
$ cd ninja
$ git checkout release
$ ./configure.py --bootstrap
$ export NINJA_PATH=$PWD

$ sudo apt-get install clang
$ Install NNPACK-darknet

$ cd
$ git clone https://github.com/digitalbrain79/NNPACK-darknet.git
$ cd NNPACK-darknet
$ confu setup
$ python3 ./configure.py --backend auto
$ $NINJA_PATH/ninja
$sudo cp -a lib/* /usr/lib/
$sudo cp include/nnpack.h /usr/include/
$sudo cp deps/pthreadpool/include/pthreadpool.h /usr/include/
$Build darknet-nnpack

$ cd
$ git clone https://github.com/digitalbrain79/darknet-nnpack.git
$ cd darknet-nnpack
$ make

weight ファイル

weight ファイルを取得する。

yolov3 はここ。

pjreddie.com

yolov2 はここ。

pjreddie.com

実行

$ ./darknet detector test cfg/coco.data cfg/yolov2.cfg yolov2.weights data/person.j
pg
layer     filters    size              input                output
    0 conv     32  3 x 3 / 1   608 x 608 x   3   ->   608 x 608 x  32  0.639 BFLOPs
    1 max          2 x 2 / 2   608 x 608 x  32   ->   304 x 304 x  32
    2 conv     64  3 x 3 / 1   304 x 304 x  32   ->   304 x 304 x  64  3.407 BFLOPs
    3 max          2 x 2 / 2   304 x 304 x  64   ->   152 x 152 x  64
    4 conv    128  3 x 3 / 1   152 x 152 x  64   ->   152 x 152 x 128  3.407 BFLOPs
    5 conv     64  1 x 1 / 1   152 x 152 x 128   ->   152 x 152 x  64  0.379 BFLOPs
    6 conv    128  3 x 3 / 1   152 x 152 x  64   ->   152 x 152 x 128  3.407 BFLOPs
    7 max          2 x 2 / 2   152 x 152 x 128   ->    76 x  76 x 128
    8 conv    256  3 x 3 / 1    76 x  76 x 128   ->    76 x  76 x 256  3.407 BFLOPs
    9 conv    128  1 x 1 / 1    76 x  76 x 256   ->    76 x  76 x 128  0.379 BFLOPs
   10 conv    256  3 x 3 / 1    76 x  76 x 128   ->    76 x  76 x 256  3.407 BFLOPs
   11 max          2 x 2 / 2    76 x  76 x 256   ->    38 x  38 x 256
   12 conv    512  3 x 3 / 1    38 x  38 x 256   ->    38 x  38 x 512  3.407 BFLOPs
   13 conv    256  1 x 1 / 1    38 x  38 x 512   ->    38 x  38 x 256  0.379 BFLOPs
   14 conv    512  3 x 3 / 1    38 x  38 x 256   ->    38 x  38 x 512  3.407 BFLOPs
   15 conv    256  1 x 1 / 1    38 x  38 x 512   ->    38 x  38 x 256  0.379 BFLOPs
   16 conv    512  3 x 3 / 1    38 x  38 x 256   ->    38 x  38 x 512  3.407 BFLOPs
   17 max          2 x 2 / 2    38 x  38 x 512   ->    19 x  19 x 512
   18 conv   1024  3 x 3 / 1    19 x  19 x 512   ->    19 x  19 x1024  3.407 BFLOPs
   19 conv    512  1 x 1 / 1    19 x  19 x1024   ->    19 x  19 x 512  0.379 BFLOPs
   20 conv   1024  3 x 3 / 1    19 x  19 x 512   ->    19 x  19 x1024  3.407 BFLOPs
   21 conv    512  1 x 1 / 1    19 x  19 x1024   ->    19 x  19 x 512  0.379 BFLOPs
   22 conv   1024  3 x 3 / 1    19 x  19 x 512   ->    19 x  19 x1024  3.407 BFLOPs
   23 conv   1024  3 x 3 / 1    19 x  19 x1024   ->    19 x  19 x1024  6.814 BFLOPs
   24 conv   1024  3 x 3 / 1    19 x  19 x1024   ->    19 x  19 x1024  6.814 BFLOPs
   25 route  16
   26 conv     64  1 x 1 / 1    38 x  38 x 512   ->    38 x  38 x  64  0.095 BFLOPs
   27 reorg              / 2    38 x  38 x  64   ->    19 x  19 x 256
   28 route  27 24
   29 conv   1024  3 x 3 / 1    19 x  19 x1280   ->    19 x  19 x1024  8.517 BFLOPs
   30 conv    425  1 x 1 / 1    19 x  19 x1024   ->    19 x  19 x 425  0.314 BFLOPs
   31 detection
mask_scale: Using default '1.000000'
Loading weights from yolov2.weights...Done!
data/person.jpg: Predicted in 4.701867 seconds.
horse: 82%
dog: 86%
person: 86%

$ ./darknet detector test cfg/coco.data cfg/yolov2-tiny.cfg yolov2-tiny.weights data/person.jpg
layer     filters    size              input                output
    0 conv     16  3 x 3 / 1   416 x 416 x   3   ->   416 x 416 x  16  0.150 BFLOPs
    1 max          2 x 2 / 2   416 x 416 x  16   ->   208 x 208 x  16
    2 conv     32  3 x 3 / 1   208 x 208 x  16   ->   208 x 208 x  32  0.399 BFLOPs
    3 max          2 x 2 / 2   208 x 208 x  32   ->   104 x 104 x  32
    4 conv     64  3 x 3 / 1   104 x 104 x  32   ->   104 x 104 x  64  0.399 BFLOPs
    5 max          2 x 2 / 2   104 x 104 x  64   ->    52 x  52 x  64
    6 conv    128  3 x 3 / 1    52 x  52 x  64   ->    52 x  52 x 128  0.399 BFLOPs
    7 max          2 x 2 / 2    52 x  52 x 128   ->    26 x  26 x 128
    8 conv    256  3 x 3 / 1    26 x  26 x 128   ->    26 x  26 x 256  0.399 BFLOPs
    9 max          2 x 2 / 2    26 x  26 x 256   ->    13 x  13 x 256
   10 conv    512  3 x 3 / 1    13 x  13 x 256   ->    13 x  13 x 512  0.399 BFLOPs
   11 max          2 x 2 / 1    13 x  13 x 512   ->    13 x  13 x 512
   12 conv   1024  3 x 3 / 1    13 x  13 x 512   ->    13 x  13 x1024  1.595 BFLOPs
   13 conv    512  3 x 3 / 1    13 x  13 x1024   ->    13 x  13 x 512  1.595 BFLOPs
   14 conv    425  1 x 1 / 1    13 x  13 x 512   ->    13 x  13 x 425  0.074 BFLOPs
   15 detection
mask_scale: Using default '1.000000'
Loading weights from yolov2-tiny.weights...Done!
data/person.jpg: Predicted in 0.652822 seconds.
horse: 92%
dog: 92%
person: 91%

$ ./darknet detector test cfg/coco.data cfg/yolov3-tiny.cfg yolov3-tiny.weights data/person.jpg
layer     filters    size              input                output
    0 conv     16  3 x 3 / 1   416 x 416 x   3   ->   416 x 416 x  16  0.150 BFLOPs
    1 max          2 x 2 / 2   416 x 416 x  16   ->   208 x 208 x  16
    2 conv     32  3 x 3 / 1   208 x 208 x  16   ->   208 x 208 x  32  0.399 BFLOPs
    3 max          2 x 2 / 2   208 x 208 x  32   ->   104 x 104 x  32
    4 conv     64  3 x 3 / 1   104 x 104 x  32   ->   104 x 104 x  64  0.399 BFLOPs
    5 max          2 x 2 / 2   104 x 104 x  64   ->    52 x  52 x  64
    6 conv    128  3 x 3 / 1    52 x  52 x  64   ->    52 x  52 x 128  0.399 BFLOPs
    7 max          2 x 2 / 2    52 x  52 x 128   ->    26 x  26 x 128
    8 conv    256  3 x 3 / 1    26 x  26 x 128   ->    26 x  26 x 256  0.399 BFLOPs
    9 max          2 x 2 / 2    26 x  26 x 256   ->    13 x  13 x 256
   10 conv    512  3 x 3 / 1    13 x  13 x 256   ->    13 x  13 x 512  0.399 BFLOPs
   11 max          2 x 2 / 1    13 x  13 x 512   ->    13 x  13 x 512
   12 conv   1024  3 x 3 / 1    13 x  13 x 512   ->    13 x  13 x1024  1.595 BFLOPs
   13 conv    256  1 x 1 / 1    13 x  13 x1024   ->    13 x  13 x 256  0.089 BFLOPs
   14 conv    512  3 x 3 / 1    13 x  13 x 256   ->    13 x  13 x 512  0.399 BFLOPs
   15 conv    255  1 x 1 / 1    13 x  13 x 512   ->    13 x  13 x 255  0.044 BFLOPs
   16 yolo
   17 route  13
   18 conv    128  1 x 1 / 1    13 x  13 x 256   ->    13 x  13 x 128  0.011 BFLOPs
   19 upsample            2x    13 x  13 x 128   ->    26 x  26 x 128
   20 route  19 8
   21 conv    256  3 x 3 / 1    26 x  26 x 384   ->    26 x  26 x 256  1.196 BFLOPs
   22 conv    255  1 x 1 / 1    26 x  26 x 256   ->    26 x  26 x 255  0.088 BFLOPs
   23 yolo
Loading weights from yolov3-tiny.weights...Done!
data/person.jpg: Predicted in 0.670556 seconds.
horse: 94%
dog: 91%
dog: 90%
person: 86%

f:id:pongsuke:20190711162524j:plain
Yolo v2

なお、yolov3 は、 Segmentation fault でした。

WEBカメラ

demo で動くし、映像モデルし、エラーも吐かないが、何もディレクトしない。

なんだろうか?